eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling

نویسندگان

  • Nabanita Nag
  • Kai Ying Lin
  • Katherine A. Edmonds
  • Jielin Yu
  • Devika Nadkarni
  • Boriana Marintcheva
  • Assen Marintchev
چکیده

Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners.

The translation initiation factors (IFs) IF1/eIF1A and IF2e/IF5B have been conserved throughout all kingdoms. Although the central roles of the bacterial factors IF1 and IF2 were established long ago, the importance of their eukaryotic homologs, eukaryotic IFs (eIFs) eIF1A and eIF5B, has only recently become evident. The translation machinery in eukaryotes is more complex and accordingly, eIF1A...

متن کامل

eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning

48S initiation complex (48S IC) formation is the first stage in the eukaryotic translation process. According to the canonical mechanism, 40S ribosomal subunit binds to the 5'-end of messenger RNA (mRNA) and scans its 5'-untranslated region (5'-UTR) to the initiation codon where it forms the 48S IC. Entire process is mediated by initiation factors. Here we show that eIF5 and eIF5B together stim...

متن کامل

Translation factor control of ribosome conformation during start codon selection.

Eukaryotic translation initiation factors (eIFs) function at multiple steps. They enable the small 40S ribosome subunit to bind to initiator tRNA and mRNA, and scan to and select an initiation codon on the mRNA. They facilitate joining of the large 60S ribosome subunit, at which point the initiation phase of translation ends with the initiator tRNA in the P (peptidyl) site, and the ribosome poi...

متن کامل

Molecular mechanisms of translation initiation in eukaryotes.

Translation initiation is a complex process in which initiator tRNA, 40S, and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of mRNA. The cap-binding complex eIF4F and the factors eIF4A and eIF4B are required for binding of 43S complexes (comprising a 40S subunit, eIF2/GTP/Met-tRNAi and eIF3) to the 5' end of capped mRNA...

متن کامل

The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo.

Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(iMet) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (deltaC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016